Increase Font Size Decrease Font Size View as PDF Print
Citation:

Alexy U, Sichert-Hellert W, Kersting M, Manz F, Schoch G. Fruit juice consumption and the prevalence of obesity and short stature in German preschool children: results of the DONALD study. Journal of Pediatric Gastroenterology & Nutrition 1999; 29: 343-249.


PubMed ID: 10468003
Study Design:
Prospective Cohort Study
Class:
B - Click here for explanation of classification scheme.
POSITIVE: See Research Design and Implementation Criteria Checklist below.
Research Purpose:
To examine the association among the consumption of fruit juice, anthropometric indices and the overall diet in children.
Inclusion Criteria:
Exclusion Criteria:
Description of Study Protocol:
  • 205 children were examined annually at the ages of three, four and five years.
  • Mothers were interviewed twice by a registered dietitian when children were aged 24, 28 or 32 months (Interview One) and when children were aged 28, 32 or 36 months (Interview Two). At each interview, mothers provided three days of dietary data (one 24-hour recall and a two-day food record).
  • Dietary intake was calculated from three-day weighed diet records. Height was measured using a stadiometer. Weight was measured using an electronic scale.

Statistical Analyses

  • Pearson correlation to investigate the possible association between long-term fruit juice consumption, overall nutrition and the development of body weight and height in healthy children.
Data Collection Summary:

Dependent

  • Growth velocity (measurements at ages three, four and five)
  • BMI (measured height and weight)
  • Height standard deviation score.

Independent

  • Excessive fruit juice consumption, =12 fluid ounces per day (three-day weighed diet record).

Confounding

  • Interactions between consumption of fruit juice and consumption of other beverages or fruit were examined.
Description of Actual Data Sample:

Sample

  • 205 healthy preschool children: 105 boys; 100 girls.

Age

  • Three to five years.

Duration

  • Three years.

Location

  • Germany.
Summary of Results:

Fruit Juice

  • BMI did not correlate with the consumption of fruit juice (R=0.1170, P=0.0949).
  • Weight gain (grams per day) did not correlate with fruit juice consumption (R=0.0039, P=0.9557).
  • Excessive fruit juice consumers had slightly higher intakes of energy, lower intakes of added sugar, higher intakes of carbohydrates and lower intakes of fat.

Total Energy

  • Children’s BMI correlated positively with the intake of energy (R=0.18, P<0.05).

Dietary Fat

  • Children’s BMI did NOT correlate with the intake of fat (calculated as % total energy).
Author Conclusion:

Excessive fruit juice consumption had no influence on anthropometric indices.

Reviewer Comments:

Research Design and Implementation Criteria Checklist: Primary Research
Relevance Questions
  1. Would implementing the studied intervention or procedure (if found successful) result in improved outcomes for the patients/clients/population group? (Not Applicable for some epidemiological studies)
N/A
  2. Did the authors study an outcome (dependent variable) or topic that the patients/clients/population group would care about?
Yes
  3. Is the focus of the intervention or procedure (independent variable) or topic of study a common issue of concern to nutrition or dietetics practice?
Yes
  4. Is the intervention or procedure feasible? (NA for some epidemiological studies)
N/A
 
Validity Questions
1. Was the research question clearly stated?
Yes
  1.1. Was (were) the specific intervention(s) or procedure(s) [independent variable(s)] identified?
Yes
  1.2. Was (were) the outcome(s) [dependent variable(s)] clearly indicated?
Yes
  1.3. Were the target population and setting specified?
Yes
2. Was the selection of study subjects/patients free from bias?
Yes
  2.1. Were inclusion/exclusion criteria specified (e.g., risk, point in disease progression, diagnostic or prognosis criteria), and with sufficient detail and without omitting criteria critical to the study?
Yes
  2.2. Were criteria applied equally to all study groups?
Yes
  2.3. Were health, demographics, and other characteristics of subjects described?
No
  2.4. Were the subjects/patients a representative sample of the relevant population?
No
3. Were study groups comparable?
N/A
  3.1. Was the method of assigning subjects/patients to groups described and unbiased? (Method of randomization identified if RCT)
N/A
  3.2. Were distribution of disease status, prognostic factors, and other factors (e.g., demographics) similar across study groups at baseline?
N/A
  3.3. Were concurrent controls used? (Concurrent preferred over historical controls.)
N/A
  3.4. If cohort study or cross-sectional study, were groups comparable on important confounding factors and/or were preexisting differences accounted for by using appropriate adjustments in statistical analysis?
N/A
  3.5. If case control or cross-sectional study, were potential confounding factors comparable for cases and controls? (If case series or trial with subjects serving as own control, this criterion is not applicable. Criterion may not be applicable in some cross-sectional studies.)
N/A
  3.6. If diagnostic test, was there an independent blind comparison with an appropriate reference standard (e.g., "gold standard")?
N/A
4. Was method of handling withdrawals described?
No
  4.1. Were follow-up methods described and the same for all groups?
N/A
  4.2. Was the number, characteristics of withdrawals (i.e., dropouts, lost to follow up, attrition rate) and/or response rate (cross-sectional studies) described for each group? (Follow up goal for a strong study is 80%.)
No
  4.3. Were all enrolled subjects/patients (in the original sample) accounted for?
???
  4.4. Were reasons for withdrawals similar across groups?
???
  4.5. If diagnostic test, was decision to perform reference test not dependent on results of test under study?
N/A
5. Was blinding used to prevent introduction of bias?
Yes
  5.1. In intervention study, were subjects, clinicians/practitioners, and investigators blinded to treatment group, as appropriate?
N/A
  5.2. Were data collectors blinded for outcomes assessment? (If outcome is measured using an objective test, such as a lab value, this criterion is assumed to be met.)
N/A
  5.3. In cohort study or cross-sectional study, were measurements of outcomes and risk factors blinded?
Yes
  5.4. In case control study, was case definition explicit and case ascertainment not influenced by exposure status?
N/A
  5.5. In diagnostic study, were test results blinded to patient history and other test results?
N/A
6. Were intervention/therapeutic regimens/exposure factor or procedure and any comparison(s) described in detail? Were interveningfactors described?
Yes
  6.1. In RCT or other intervention trial, were protocols described for all regimens studied?
N/A
  6.2. In observational study, were interventions, study settings, and clinicians/provider described?
Yes
  6.3. Was the intensity and duration of the intervention or exposure factor sufficient to produce a meaningful effect?
Yes
  6.4. Was the amount of exposure and, if relevant, subject/patient compliance measured?
Yes
  6.5. Were co-interventions (e.g., ancillary treatments, other therapies) described?
N/A
  6.6. Were extra or unplanned treatments described?
N/A
  6.7. Was the information for 6.4, 6.5, and 6.6 assessed the same way for all groups?
N/A
  6.8. In diagnostic study, were details of test administration and replication sufficient?
N/A
7. Were outcomes clearly defined and the measurements valid and reliable?
Yes
  7.1. Were primary and secondary endpoints described and relevant to the question?
Yes
  7.2. Were nutrition measures appropriate to question and outcomes of concern?
Yes
  7.3. Was the period of follow-up long enough for important outcome(s) to occur?
Yes
  7.4. Were the observations and measurements based on standard, valid, and reliable data collection instruments/tests/procedures?
N/A
  7.5. Was the measurement of effect at an appropriate level of precision?
Yes
  7.6. Were other factors accounted for (measured) that could affect outcomes?
No
  7.7. Were the measurements conducted consistently across groups?
Yes
8. Was the statistical analysis appropriate for the study design and type of outcome indicators?
No
  8.1. Were statistical analyses adequately described and the results reported appropriately?
Yes
  8.2. Were correct statistical tests used and assumptions of test not violated?
Yes
  8.3. Were statistics reported with levels of significance and/or confidence intervals?
Yes
  8.4. Was "intent to treat" analysis of outcomes done (and as appropriate, was there an analysis of outcomes for those maximally exposed or a dose-response analysis)?
N/A
  8.5. Were adequate adjustments made for effects of confounding factors that might have affected the outcomes (e.g., multivariate analyses)?
No
  8.6. Was clinical significance as well as statistical significance reported?
Yes
  8.7. If negative findings, was a power calculation reported to address type 2 error?
No
9. Are conclusions supported by results with biases and limitations taken into consideration?
No
  9.1. Is there a discussion of findings?
Yes
  9.2. Are biases and study limitations identified and discussed?
No
10. Is bias due to study’s funding or sponsorship unlikely?
Yes
  10.1. Were sources of funding and investigators’ affiliations described?
No
  10.2. Was the study free from apparent conflict of interest?
Yes
 
 

Copyright American Dietetic Association (ADA).